Active Body, Active Mind – Effects On Brain Development

Tommy Wood, BA (Cantab), BM BCh (Oxon), PhD

Associate Professor of Pediatrics and Neuroscience University of Washington, Seattle, USA

Research Team Lead *Food for the Brain*

My work

British Society of **lifestyle medicine**

OHINTSA

Overview

- A way to think about what the brain needs
- The importance of stimulating the brain during development
 - Primary drivers of adaptation
- The importance of rest and recovery
 - Time for that adaptation to occur

The brain takes ~30 years to develop

- The brain is dynamic and responsive across the entire lifespan
- Possible to intervene regardless of age

Brouwer et al. Nature Neuroscience 2022

The human brain is (slowly) shaped by the environment

The human brain is (slowly) shaped by the environment

- Most recently evolved brain structures mature the slowest
 - Responsible for the most complex cognitive functions

Cognitive function is driven by environment

• 697 extremely preterm infants assessed at 2-years old

Home-ics and brain development

Christensen et al., Pediatric Research 2024

A system for brain health

A simplified model – strength as an example

Supply

- Adequate Protein/Calories
- Micronutrients

Demand-function coupling in the brain

- The function of a tissue is determined by the stimulus
 - Same as with exercise and fitness/strength
- Similar across all stages of life

Your brain is just like your muscles

- Multiple interacting factors for brain development
- Stimulus
 - Physical activity, cognitive, and social activity
- Supply
 - Vascular health and nutrient status
- Support
 - Sleep, stress, avoiding toxic exposures

My model of brain function

Credit: Alex Stewart, Derek & Eric Design Agency

Lifting weights for your brain

- Brain function is driven by learning new things
 - Adapting to the environment
- Complex skill learning improves cognitive function in kids
 - Languages
 - Music
 - Unstructured play
 - Sports
 - Video games

Education shows the importance of stimulus

Education and the peak and age of cognitive function

Education

- Greater cognitive stimulus for longer during childhood
 - Higher peak of cognitive function
 - Lasts your entire lifetime

Music and the developing brain

- Randomized studies show music lessons improve:
 - Working memory
 - Decision making
 - Cognitive flexibility
- Benefits all age groups
 - 3 year-olds up to young teens
 - May be better started earlier
 - Higher benefit in those who are less socioeconomically advantaged

Music in primary school children

- One hundred and forty-seven primary school children
- Four groups over 2.5 years
 - Control, art, and two music groups
 - 1–2 h lessons weekly. Collective music making, singing and improvising.

** p <.05

Languages and brain development

- Bilinguals often outperform monolinguals in executive function
 - Better inhibitory control
 - Split-second decision making
 - Due to the brain having to constantly control language output
- Recent report by the British Academy/UCL suggests foreign language learning can improve creativity
- Foreign language learning in childhood is associated with improved maths skills

Physical activity

- Multiple studies show that physical activity improves:
 - Focus/attention
 - Executive function
 - Academic performance
- Physical fitness and strength are associated with better academic performance
- Similar benefits seen in children with neurodevelopmental disorders
 - Dose-dependent effects

Exercise in neurodevelopmental disorders

• Meta-analysis of 35 studies

- Beneficial interventions included
 - Swimming
 - Racquet and ball sports (table tennis, football)
 - Running
 - Martial arts

Cognitive flexibility

Da Silva et al (2020)	Cognitive flexibility	ADHD		3.54 [2.13, 4.95]
Faraji et al (2023)	Cognitive flexibility	ASD		1.47 [0.76, 2.19]
Kang et al (2011)-1	Cognitive flexibility	ADHD		0.81 [0.05, 1.58]
Chen et al (2015)-2	Cognitive flexibility	Intellectual disability	⊢	0.79 [0.35, 1.23]
Pan et al (2017)	Cognitive flexibility	ASD	•	0.66 [-0.19, 1.50]
Chang et al (2022)-2	Cognitive flexibility	ADHD	· · · · · · · · · · · · · · · · · · ·	0.58 [-0.13, 1.30]
Liang et al (2022)-1	Cognitive flexibility	ADHD		0.52 [0.07, 0.97]
Milajerdi et al (2021)-2(Kinect)	Cognitive flexibility	ASD		0.43 [-0.22, 1.08]
Pan et al(2019)-2	Cognitive flexibility	ADHD		0.39 [-0.33, 1.11]
Benzing et al (2019)-2	Cognitive flexibility	ADHD	⊢	0.36 [-0.19, 0.91]
Benzing (2018)-2	Cognitive flexibility	ADHD		0.36 [-0.22, 0.94]
Chang et al (2012)-2	Cognitive flexibility	ADHD		0.14 [-0.48, 0.76]
Chan et al (2013)-3	Cognitive flexibility	ASD		0.09 [-0.53, 0.71]
Milajerdi et al (2021)-1(SPARK)	Cognitive flexibility	ASD		0.09 [-0.54, 0.71]
Summary = Cognitve flexibility			•	0.60 [0.31, 0.89]

Liu et al., Preventive Medicine 2025

Exercise and focus/memory

- 9-10 year-old children
- Running vs complex skills
 - 45 minutes 3x per week for 10 weeks
 - Playful balance, coordination, ball games, skipping ropes etc

Koutsandréou et al. Med Sci Sports Exerc 2016

Brain-boosting effect of coordinative exercise

- 12 males in their 20's-30's, cross-over study
 - 400m track with/without obstacles for 60 min
 - Pace constant to maintain similar exertion
 - Both types increased BDNF
 - Obstacles > Normal running

	Normal			Enriched		
	Before 95% CI	After 95% CI	ES	Before 95% CI	After 95% CI	ES
BDNF (ng/ml)	8.33 ± 0.71 [7.87-8.78]	8.85 ± 0.71* [8.29-9.20]	0.59	8.39 ± 0.64 [7.98-8.79]	9.46 ± 0.71*¥ [9.01-9.91]	1.60
IGF-1 (ng/ml)	333.06 ± 45.81 [303.95-362.16]	338.82 ± 40.96* [312.79-364.84]	0.13	341.30 ± 37.95 [317.19-365.41	379 ± 31.96*¥ [359.25-399.86]	1.09
VEGF (ng/ml)	121.91 ± 25.97 [105.41-138.41]	131.41 ± 25.81* [115.01-147.80]	0.37	130.91 ± 28.48 [112.81-149.00]	$168.03 \pm 29.31^{*}$ [149.41-186.65]	1.28

Table 1. Mean and SD of study variables in pre and post-time for normal and enriched environments.

* Significantly different from pre-intervention ($p \le 0.001$).

¥s Significantly different from normal environment ($p \le 0.001$).

The importance of play and risk

- Increasing mental health problems in children
 - Inability to deal with stressful situations
 - Decreased outdoor/adventurous play and increased indoor time
- Outdoor/adventurous play associated with
 - Less anxiety and fear
 - Better mental health during Covid-19 lockdown
- Increased "risky" play improves a kid's ability to assess risk
- Restrictive parenting increases risk-seeking behavior later

Risk ≠ Danger

- Beneficial risky play
 - Play with heights or high speed (climbing, running, jumping)
 - Rough-and-tumble play
 - Risk of getting lost (within reason)
- Principles of beneficial risky play
 - Attempting things above current skill level
 - Requires concentration and determination
 - Requires control and thought to prevent injury
 - Failure comes with a risk of minor injury

Are video games good for your brain??

- Large US study of 2,217 9-10 year-old children
 - Gamers (~3h per day) vs non-gamers (0h per day)
 - Gamers had slightly better reaction times and decision making
- Several studies in adults show benefit of computer games
 - Complex movement/puzzle solving in new environments
 - Usually Super Mario

*

Video games in context

- Video games can be a beneficial stimulus for the brain
- As long as it doesn't prevent you doing other important things:
 - Eating a nutritious diet
 - Sleep
 - Learning
 - Time outside
 - Doing physical activity/sports
 - Replacing physical activity with screen time increases depression risk
 - Spending time with *real* people

The importance of recovery

- Recovery and sleep is how you get stronger and smarter
- Sleep is when:
 - You save memories
 - The brain makes new connections
 - Your brain cleans itself
- Sleep deprivation results in:
 - Lower cognitive function
 - Decreased empathy
 - More negative emotional responses
 - Impaired decision making

Sleep and academic performance

- Seattle Sleepmore study
 - All schools started an hour later
 - Kids slept 34 minutes longer on average
 - 4.5% Higher grades
 - Higher attendance and more graduates

- Two important factors for sleep in children/teens
 - Caffeine
 - Screen time
 - Both also relevant to adults(!)

Caffeine

Children who consume caffeine sleep less well

- Study of 10-16 year-olds
- Caffeine consumers:
 - Fall asleep ~1 hour later
 - Spend an hour less in bed
 - Get less deep sleep
- Afternoon caffeine impairs sleep
 - Last strong coffee ~12h before bed
 - Last Coca-cola ~8-9h before bed
 - Small amounts of caffeine in tea is OK

Screens

- Sleep is initiated by the hormone melatonin
 - Starts to increase ~2h before sleep
- Melatonin production is decreased by bright light

Melatonin in children

- Children are much more susceptible to light than adults
 - 9-10 years-old children have about twice the melatonin suppression
 - Minimise bright overhead lights in the evening
 - Stop screens at least 1-2h before you want to fall asleep

Social media – the opposite of rest

- Increasing social media use is associated with higher depression
 - Greater risk in girls
 - Many schools banning smartphones

Social media can drive stress

- We've evolved to be social animals
- Loneliness causes stress/inflammation
 - Survival response
- Similar response to "social stress"
 - Being left out
 - Being bullied
 - Seeing people who are "better" than you

Active bodies and minds

- Function of the brain is driven by learning and challenge
- Critical to provide children with a variety of demanding stimuli
 - Music
 - Languages
 - Physical activity (especially with a coordinative component)
 - Social interaction
 - Play and risk taking
 - The developing brain will go looking for limits if they are denied
- Support stimulus with adequate rest and recovery

Active Body, Active Mind – Effects On Brain Development

Tommy Wood, BA (Cantab), BM BCh (Oxon), PhD

Associate Professor of Pediatrics and Neuroscience University of Washington, Seattle, USA

Research Team Lead *Food for the Brain*

