Introduction
3. Livingston G, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. 2024 Aug 10;404(10452):572–628. doi: https://doi.org/10.1016/S0140-6736(24)01296-0 Epub 2024 Jul 31.
4. Nguyen D, et al. Payments by Drug and Medical Device Manufacturers to US Peer Reviewers of Major Medical Journals. JAMA. 2024;332(17):1480–1482. doi: https://doi.org/10.1001/jama.2024.17681
Part 1 – WHAT DOES & DOESN’T CAUSE ALZHEIMER’S
Chapter 1. Amyloid ≠ Alzheimer’s and the Tauist’s delusion
8. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015 Jun;18(6):794–799. doi: https://doi.org/10.1038/nn.4017 (Also see references and full discussion in Chapter 8 of How Not to Study a Disease, K. Herrup, MIT Press. Lopez OL, et al. Association Between β-Amyloid Accumulation and Incident Dementia in Individuals 80 Years or Older Without Dementia. Neurology. 2024 Jan 23;102(2):e207920.)
9. Salloway S, et al. Dominantly Inherited Alzheimer Network–Trials Unit. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med. 2021 Jul;27(7):1187–1196. doi: https://doi.org/10.1038/s41591-021-01369-8 Epub 2021 Jun 21.
10. Volloch V, et al. Results of Beta Secretase-Inhibitor Clinical Trials Support Amyloid Precursor Protein-Independent Generation of Beta Amyloid in Sporadic Alzheimer’s Disease. Med Sci (Basel). 2018 Jun 2;6(2):45. doi: https://doi.org/10.3390/medsci6020045
11. van Dyck CH, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023 Jan 5;388(1):9–21. doi: https://doi.org/10.1056/NEJMoa2212948 Epub 2022 Nov 29.
12. Walsh S, et al. Lecanemab for Alzheimer’s disease. BMJ. 2022;379:o3010. doi: https://doi.org/10.1136/bmj.o3010
15. Ackley SF, et al. Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ. 2021 Feb 25;372:n156. doi: https://doi.org/10.1136/bmj.n156 Erratum in: BMJ. 2022 Aug 30;378:o2094.
16. Smith AD. Anti-amyloid trials raise scientific and ethical questions. BMJ. 2021;372:n805. doi: https://doi.org/10.1136/bmj.n805
17. Smith AD. Why are drug trials in Alzheimer’s disease failing? Lancet. 2010;376:1466. doi: https://doi.org/10.1016/S0140-6736(10)61994-0
18. Sims JR, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023 Aug 8;330(6):512–527. doi: https://doi.org/10.1001/jama.2023.13239
20. Cummings J, et al. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement (N Y). 2024 Apr 24;10(2):e12465. Dutch. doi: https://doi.org/10.1002/trc2.12465
24. Smith AD, Refsum H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu Rev Nutr. 2016 Jul 17;36:211–239. doi: https://doi.org/10.1146/annurev-nutr-071715-050947; see also Li JG, Chu J, Barrero C, Merali S, Pratico D. Homocysteine exacerbates β-amyloid, tau pathology, and cognitive deficit in a mouse model of Alzheimer’s disease with plaques and tangles. Ann Neurol. 2014;75:851–63; doi: https://doi.org/10.1002/ana.24166; see also Shirafuji N, et al. Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. Int J Mol Sci.2018 Mar 17;19(3):891. doi: https://doi.org/10.3390/ijms19030891; see also Bossenmeyer-Pourié C, et al. N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol. 2019 Jul;248(3):291–303. doi: https://doi.org/10.1002/path.5254 Epub 2019 Mar 19.
25. Wischik CM, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11213–8. doi: https://doi.org/10.1073/pnas.93.20.1121
26. Al-Hilaly YK, et al. Cysteine-Independent Inhibition of Alzheimer’s Disease-like Paired Helical Filament Assembly by Leuco-Methylthioninium (LMT). J Mol Biol. 2018 Oct 19;430(21):4119–4131. Epub 2018 Aug 16. Doi: https://doi.org/10.1016/j.jmb.2018.08.010
27. Arvanitakis Z, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol.2004 May;61(5):661–666. doi: https://doi.org/10.1001/archneur.61.5.661; see also Yaffe K, et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004 Aug 24;63(4):658–663. doi: https://doi.org/10.1212/01.WNL.0000134665.93885.71; see also Tiehuis AM, et al. Diabetes Increases Atrophy and Vascular Lesions on Brain MRI in Patients With Symptomatic Arterial Disease. Stroke. 2008 May;39(5):1600–1603. doi: https://doi.org/10.1161/STROKEAHA.107.502963; see also Samaras K, et al. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study. AGE. 2014;36(2):977–993. doi: https://doi.org/10.1007/s11357-013-9585-3; see also Mortby ME, et al. High ‘normal’ blood glucose is associated with decreased brain volume and cognitive performance in the 60s: the PATH through life study. PLoS One. 2013 Sep 4;8(9):e73697.
doi: https://doi.org/10.1371/journal.pone.0073697; see also Crane PK, et al. Glucose levels and risk of dementia. N Engl J Med. 2013 Aug 8;369(6):540–548. doi: https://doi.org/10.1056/NEJMoa1215740; see also Luchsinger JA, et al. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004 Oct 12;63(7):1187–1192. doi: https://doi.org/10.1212/01.wnl.0000140292.04932.87; see also Abbatecola AM, et al. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc. 2004 Oct;52(10):1713–1718. doi: https://doi.org/10.1111/j.1532-5415.2004.52466.x; see also Ye X, et al. Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br J Nutr. 2011 Nov;106(9):1423–1432. doi: https://doi.org/10.1017/S0007114511001760; see also Power SE, et al. Dietary glycaemic load associated with cognitive performance in elderly subjects. Eur J Nutr.2015 Jun;54(4):557–568. doi: https://doi.org/10.1007/s00394-014-0737-5; see also Seetharaman S, et al. Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults. J Gerontol A Biol Sci Med Sci. 2015 Apr;70(4):471–479. doi: https://doi.org/10.1093/gerona/glu135; see also Taylor MK, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017 Dec;106(6):1463–1470. doi: https://doi.org/10.3945/ajcn.117.162263; see also Gentreau M, et al. High Glycemic Load Is Associated with Cognitive Decline in Apolipoprotein E ε4 Allele Carriers. Nutrients. 2020 Nov 25;12(12):3619. doi: https://doi.org/10.3390/nu12123619
28. Xie W, et al. Association between disease-modifying antirheumatic drugs for rheumatoid arthritis and risk of incident dementia: a systematic review and meta-analysis. RMD Open. 2024 Feb 27;10(1):e004016. doi: https://doi.org/10.1136/rmdopen-2023-004016
29. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014 Jun 24;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
30. Teng Z, et al. Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front Aging Neurosci. 2022;14:868777. doi: https://doi.org/10.3389/fnagi.2022.868777
31. Chen C, et al. B vitamin intakes modify the association between particulate air pollutants and incidence of all-cause dementia: Findings from the Women’s Health Initiative Memory Study. Alzheimers Dement. 2022 Nov;18(11):2188–2198. doi: https://doi.org/10.1002/alz.12515 Epub 2022 Feb 1.
Chapter 2: Less than 1% is ‘in the Genes’ and the ApoE4 Exaggeration
32. McKay NS, Benzinger TLS. The Dominantly Inherited Alzheimer Network: A neuroimaging resource. Nat Neurosci.2023 Aug;26(8):1326–1327. doi: https://doi.org/10.1038/s41593-023-01360-1
33. Bekris LM, et al. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010 Dec;23(4):213–27. doi: https://doi.org/10.1177/0891988710383571
34. https://www.npr.org/2025/02/12/nx-s1-5293253/his-genes-forecast-alzheimers-his-brain-had-other-plans?utm_source=firefox-newtab-en-gb Llibre-Guerra JJ, et al. Longitudinal analysis of a dominantly inherited Alzheimer disease mutation carrier protected from dementia. Nat Med. (2025). https://doi.org/10.1038/s41591-025-03494-0
35. Bellenguez C, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet.2022;54:412–436. https://doi.org/10.1038/s41588-022-01024-z
36. Escott-Price V, et al. Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Ann Neurol. 2017 Aug;82(2):311–314. doi: https://doi.org/10.1002/ana.24999
37. Heininger K. A unifying hypothesis of Alzheimer’s disease. III. Risk factors. Hum Psychopharmacol Clin Exp.2000;15:1–70. https://doi.org/10.1002/(SICI)1099-1077(200001)15:1<1::AID-HUP153>3.0.CO;2-1; see also Ridge PG, et al. Alzheimer’s Disease: Analyzing the Missing Heritability. PLoS ONE. 2013;8(11):e79771.
doi: https://doi.org/10.1371/journal.pone.0079771
38. Dunk MM, Driscoll I; Alzheimer’s Disease Neuroimaging Initiative. Total Cholesterol and APOE-Related Risk for Alzheimer’s Disease. J Alzheimers Dis. 2022;85(4):1519–1528. doi: https://doi.org/10.3233/JAD-215091
39. Walsh S, et al. Lecanemab for Alzheimer’s disease. BMJ. 2022;379:o3010. doi: https://doi.org/10.1136/bmj.o3010; see also van Dyck CH, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388(1):9–21
40. Norwitz NG, et al. Precision Nutrition for Alzheimer’s Prevention in ApoE4 Carriers. Nutrients. 2021;13:1362. https://doi.org/10.3390/nu13041362
41. Jia J, et al. Association between healthy lifestyle and memory decline in older adults: 10 year, population based, prospective cohort study. BMJ. 2023;380:e072691. http://dx.doi.org/10.1136/bmj-2022-072691
42. Solomon A, et al. Effect of the Apolipoprotein E Genotype on Cognitive Change During a Multidomain Lifestyle Intervention: A Subgroup Analysis of a Randomized Clinical Trial. JAMA Neurol. 2018 Apr 1;75(4):462–470. doi: https://doi.org/10.1001/jamaneurol.2017.4365
43. Morris AA, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40:49–74 doi: https://doi.org/10.1007/s10545-016-9979-0; see also Bouguerra K, et al. The methylenetetrahydrofolate reductase C677T and A1298C genetic polymorphisms and plasma homocysteine in Alzheimer’s disease in an Algerian population. Int J Neurosci.2022 Dec 29:1–6. doi: https://doi.org/10.1080/00207454.2022.2158825; see also Zuin M, et al. Methylenetetrahydrofolate reductase C667T polymorphism and susceptibility to late-onset Alzheimer’s disease in the Italian population. Minerva Med. 2021 Jun;112(3):365–371
doi: https://doi.org/10.23736/S0026-4806.20.06801-9 (Epub 2020 Jul 22)
44. Teng Z, et al. Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front Aging Neurosci. 2022;14:868777. doi: https://doi.org/10.3389/fnagi.2022.868777
45. Niu YY, et al. Association of dietary choline intake with incidence of dementia, Alzheimer disease, and mild cognitive impairment: a large population-based prospective cohort study. Am J Clin Nutr. 2024 Nov 7:S0002-9165(24)00869-4. doi: https://doi.org/10.1016/j.ajcnut.2024.11.001
46. Smith AD, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010 Sep 8;5(9):e12244. doi: https://doi.org/10.1371/journal.pone.0012244; see also Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr. 2016;36:211–239.
47. Douaud G, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110:9523–9528. doi: https://doi.org/10.1073/pnas.130181611
Chapter 3. Alzheimer’s is Caused by a Systems Breakdown
48. Chen C, et al. B vitamin intakes modify the association between particulate air pollutants and incidence of all-cause dementia: Findings from the Women’s Health Initiative Memory Study. Alzheimers Dement. 2022 Nov;18(11):2188–2198. doi: https://doi.org/10.1002/alz.12515 Epub 2022 Feb 1.
49. Bloomberg M, et al. Associations of accelerometer-measured physical activity, sedentary behaviour, and sleep with next-day cognitive performance in older adults: a micro-longitudinal study. Int J Behav Nutr Phys Act. 2024;21:133. https://doi.org/10.1186/s12966-024-01683-7
50. Pending publication – details to follow.
51. Cummings JL, et al. The costs of developing treatments for Alzheimer’s disease: A retrospective exploration. Alzheimers Dement. 2022 Mar;18(3):469-477. doi: https://doi.org/10.1002/alz.12450
52. van Dyck CH, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023 Jan;388(1):9-21. doi: https://doi.org/10.1056/NEJMoa2212948
53. Oulhaj A, et al. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment. J Alzheimers Dis. 2016;50(2):547-57. doi: https://doi.org/10.3233/JAD-150777
54. Ackley SF, et al. Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ. 2021 Feb;372:n156. doi: https://doi.org/10.1136/bmj.n156
55. Nguyen D, et al. Payments by Drug and Medical Device Manufacturers to US Peer Reviewers of Major Medical Journals. JAMA. 2024;332(17):1480-1482. doi: https://doi.org/10.1001/jama.2024.17681
58. https://www.ncbi.nlm.nih.gov/search/research-news/17133/ here is the actual New York Times link, but behind a paywall https://www.nytimes.com/2022/09/15/health/fda-drug-industry-fees.html
59. https://edition.cnn.com/2024/05/18/health/alzheimers-blood-brain-improvement-wellness/index.html
PART 2 – THE 8 PREVENTION DOMAINS
Chapter 4. The Four Biological Horsemen of the Brain Apocalypse
60. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024 May;403(10440):2133-2161. doi: https://doi.org/10.1016/S0140-6736(24)00757-8
62. Ren R, et al. The China Alzheimer Report 2022. General Psychiatry. 2022;0:e100751. doi: https://doi.org/10.1136/gpsych-2022-100751
63. van Os J, et al. Population Salutogenesis – The Future of Psychiatry? JAMA Psychiatry. 2023 Dec. doi: https://doi.org/10.1001/jamapsychiatry.2023.4582
64. Crawford M, et al. The Shrinking Brain. Filament Publishing; 2023. https://www.amazon.co.uk/Shrinking-Brain-Michael-Crawford
65. von Bartheld CS, et al. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol. 2016 Dec;524(18):3865-3895. doi: https://doi.org/10.1002/cne.24040
66. Wood T, et al. A systems-based unified model of age-related cognitive decline and its prevention.
Chapter 5. Brain Fats – Omega-3, Phospholipids and Vitamin D
68. Methylation is required in the synthesis of choline, the actual process of attaching the phospholipid to mega-3 or arachidonic acid is called acetylation.
69. Livingston G, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. 2024 Aug;404(10452):572-628. doi: https://doi.org/10.1016/S0140-6736(24)01296-0
70. Thomas A, et al. Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk. Alzheimers Dement. 2020;17(3):407-16. doi: https://doi.org/10.3390/brainsci13091278
71. Thomas A, et al. “Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk.” Alzheimer’s & Dementia. 2021;17:407-416. doi: https://doi.org/10.1002/alz.12195; Schaefer EJ, et al. “Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study.” Archives of Neurology. 2006;63:1545-1550. doi: https://doi.org/10.1001/archneur.63.11.1545; Selley ML. “A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer’s disease.” Neurobiology of Aging. 2007 Dec;28(12):1834-9. doi: https://doi.org/10.1016/j.neurobiolaging.2006.08.006; Whiley L, et al. “Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease.” Neurobiology of Aging. 2014 Feb;35(2):271-8. doi: https://doi.org/10.1016/j.neurobiolaging.2013.08.001; Yuki D, et al. “DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease.” Scientific Reports. 2014 Nov;4:7130. doi: https://doi.org/10.1038/srep07130.
72. Sala-Vila A, et al. Plasma Omega-3 Fatty Acids and Risk for Incident Dementia in the UK Biobank Study: A Closer Look. Nutrients. 2023 Nov;15(23):4896. doi: https://doi.org/10.3390/nu15234896
73. Avallone R, et al. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int J Mol Sci. 2019;20:4256. https://doi.org/10.3390/ijms20174256
74. Sala-Vila A, et al. Plasma Omega-3 Fatty Acids and Risk for Incident Dementia in the UK Biobank Study: A Closer Look. Nutrients. 2023 Nov;15(23):4896. doi: https://doi.org/10.3390/nu15234896
75. Wei BZ, et al. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr. 2023;117(6):1096-1109. doi: https://doi.org/10.1016/j.ajcnut.2023.04.001
76. Loong S, et al. Omega-3 Fatty Acids, Cognition, and Brain Volume in Older Adults. Brain Sci. 2023;13:1278. doi: https://doi.org/10.3390/brainsci13091278
77. Shinto LH, et al. ω-3 PUFA for Secondary Prevention of White Matter Lesions and Neuronal Integrity Breakdown in Older Adults: A Randomized Clinical Trial. JAMA Netw Open. 2024;7(8):e2426872. doi: https://doi.org/10.1001/jamanetworkopen.2024.26872 78. https://www.newsweek.com/fish-oil-prevent-dementia-1933059
79. Witte AV, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex.2014 Nov;24(11):3059-68. doi: https://doi.org/10.1093/cercor/bht163
80. Schaefer EJ, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006 Nov;63(11):1545-50. doi: https://doi.org/10.1001/archneur.63.11.1545
81. Niu Y, et al. Association of dietary choline intake with incidence of dementia, Alzheimer disease, and mild cognitive impairment: a large population-based prospective cohort study. Am J Clin Nutr. 2025;121(1):5-13. doi: https://doi.org/10.1016/j.ajcnut.2024.11.001
82. Pan Y, et al. Association of Egg Intake With Alzheimer’s Dementia Risk in Older Adults: The Rush Memory and Aging Project. J Nutr. 2024 Jul;154(7):2236-2243. doi: https://doi.org/10.1016/j.tjnut.2024.05.012
83. Jayedi A, et al. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response. Nutr Neurosci. 2019 Nov;22(11):750-759. doi: https://doi.org/10.1080/1028415X.2018.1436639
84. Chai B, et al. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: an updated meta-analysis. BMC Neurol. 2019 Nov;19(1):284. doi: https://doi.org/10.1186/s12883-019-1500-6
85. Feart C, et al. Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimers Dement. 2017 Nov;13(11):1207-1216. doi: https://doi.org/10.1016/j.jalz.2017.03.003
86. Jia J, et al. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry.2019 Dec;90(12):1347-1352. doi: https://doi.org/10.1136/jnnp-2018-320199
87. Ghahremani M, et al. Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. Alzheimers Dement (Amst). 2023 Mar;15(1):e12404. doi: https://doi.org/10.1002/dad2.12404
88. You W. The Protective Role of Ambient Ultraviolet Radiation Against Dementia: An Ecological Analysis of Global Data. Health Sci Rep. 2025;8:e70302. doi: https://doi.org/10.1002/hsr2.70302
89. Patrick RP, et al. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015 Jun;29(6):2207-22. doi: https://doi.org/10.1096/fj.14-268342
90. Ma LZ, et al. Time spent in outdoor light is associated with the risk of dementia: a prospective cohort study of 362094 participants. BMC Med. 2022 Apr;20(1):132. doi: https://doi.org/10.1186/s12916-022-02331-2
91. Zhong G, et al. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One. 2015 Mar;10(3):e0118333. doi: https://doi.org/10.1371/journal.pone.0118333
92. Abolhasani E, et al. Air pollution and incidence of dementia: a systematic review and meta-analysis. Neurology.2023;100:e242-54. Doi: https://doi.org/10.1212/WNL.000000000020141
93. Gong Q, et al. A probability formula derived from serum indicators, age, and comorbidities as an early predictor of dementia in elderly Chinese people. Brain Behav. 2021;11:e2236. doi: https://doi.org/10.1002/brb3.2236
94. See reference 93
95. Peters R, et al. Dementia risk reduction, why haven’t the pharmacological risk reduction trials worked? An in-depth exploration of seven established risk factors. Alzheimers Dement (N Y). 2021;7:e12202. doi: https://doi.org/10.1002/trc2.12202
96. Wee J, et al. The relationship between midlife dyslipidemia and lifetime incidence of dementia: A systematic review and meta-analysis of cohort studies. Alzheimer’s Dement (Amst). 2023 Mar;15(1):e12395. doi: https://doi.org/10.1002/dad2.12395
97. Kjeldsen EW, et al. Adherence to dietary guidelines and risk of dementia: a prospective cohort study of 94 184 individuals. Epidemiol Psychiatr Sci. 2022;31:e71. https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/adherence-to-dietary-guidelines-and-risk-of-dementia-a-prospective-cohort-study-of-94-184-individuals/25426D15224985397A46A6688B215ADD
99. Han BH, et al. Effect of Statin Treatment vs Usual Care on Primary Cardiovascular Prevention Among Older Adults: The ALLHAT-LLT Randomized Clinical Trial. JAMA Intern Med. 2017 Jul;177(7):955-965. doi: https://doi.org/10.1001/jamainternmed.2017.1442
100. McGuinness B, et al. Statins for the prevention of dementia. Cochrane Database Syst Rev. 2016;1:CD003160. Doi: https://doi.org/10.1002/14651858.CD003160.pub3
101. Zhang X, et al. Midlife lipid and glucose levels are associated with Alzheimer’s disease. Alzheimers Dement. 2023 Jan;19(1):181-193. doi: https://doi.org/10.1002/alz.12641
103. Loong S, et al. Omega-3 fatty acids, cognition, and brain volume in older adults. Brain Sci. 2023;13(9):1278. doi: https://doi.org/10.3390/brainsci13091278
104. Morris MC, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003 Jul;60(7):940-6. doi: https://doi.org/10.1001/archneur.60.7.940
105. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014 Jun 24;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
106. Pan Y, et al. Association of egg intake with Alzheimer’s dementia risk in older adults: the Rush memory and aging project. J Nutr. 2024 Jul;154(7):2236-2243. doi: https://doi.org/10.1016/j.tjnut.2024.05.012
Chapter 6. Methylation, Homocysteine and the Causal Role of B vitamins
107. Response from ARUK (30/4/24): “The figures on research spend at that level of detail are not available on our website, but I have provided them here. £8.5 million funding on 66 non-drug prevention studies, the first study of this type was funded in 2002. Since 2002 we’ve funded a total of £194.3M. As a percentage of the whole that’s 4.36%.”
108. Smith AD, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 2018;62:561-70. doi: https://doi.org/10.3233/JAD-171042
109. Both (37 above) and Douaud G, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110:9523-8. doi: https://doi.org/10.1073/pnas.1301816110
110. vanSoest APM, et al. Concurrent nutrient deficiencies are associated with dementia incidence. Alzheimers Dement. 2024;20:4594-60. https://doi.org/10.1002/alz.13884
111. Pfeiffer CM, et al. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr. 2002;82:442-50.https://pubmed.ncbi.nlm.nih.gov/16087991/
112. He SY, et al. Non-genetic risk factors of Alzheimer’s disease: an updated umbrella review. J Prev Alzheimers Dis.2024. doi: http://dx.doi.org/10.14283/jpad.2024.100
113. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
114. Xu R, et al. Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Sci Rep. 2020;10:17401. doi: https://doi.org/10.1038/s41598-020-74596-7
115. Kim M, et al. Serum homocysteine levels and all-cause and cause-specific mortality in Korean adult men: a cohort study. Nutrients. 2024;16(16):2759. doi: https://doi.org/10.3390/nu16162759
116. Pfeiffer CM, et al. Trends in circulating concentrations of total homocysteine among US adolescents and adults: findings from the 1991-1994 and 1999-2004 National Health and Nutrition Examination Surveys. Clin Chem. 2008 May;54(5):801-13. doi: https://doi.org/10.1373/clinchem.2007.100214
117. Vogiatzoglou A, et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology.2008 Sep 9;71(11):826-32. doi: https://doi.org/10.1212/01.wnl.0000325581.26991.f2
118. O’Connor DMA, et al. Plasma concentrations of vitamin B12 and folate and global cognitive function in an older population: cross-sectional findings from the Irish Longitudinal Study on Ageing (TILDA). Br J Nutr. 2020;124(6):602-610. doi: https://doi.org/10.1017/S0007114520001427
119. Teng Z, et al. Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front Aging Neurosci. 2022;14:868777. doi: https://doi.org/10.3389/fnagi.2022.868777
121. Swarnakari KM, et al. The effects of proton pump inhibitors in acid hypersecretion-induced vitamin B12 deficiency: a systematic review (2022). Cureus. 2022 Nov 19;14(11):e31672. doi: https://doi.org/10.7759/cureus.31672
122. Northuis C, et al. Cumulative use of proton pump inhibitors and risk of dementia: the atherosclerosis risk in communities study. Neurology. 2023. doi: https://doi.org/10.1212/WNL.0000000000207747
124. Dierkes J, et al. Effect of lipid-lowering and anti-hypertensive drugs on plasma homocysteine levels. Vasc Health Risk Manag. 2007;3(1):99-108. https://pubmed.ncbi.nlm.nih.gov/17583180/
125. Smith AD, Refsum H. Do we need to reconsider the desirable blood level of vitamin B12? J Intern Med. 2012 Feb;271(2):179-82. doi: https://doi.org/10.1111/j.1365-2796.2011.02485.x
126. Shirafuji N, et al. Homocysteine increases tau phosphorylation, truncation and oligomerization. Int J Mol Sci.2018;19(3):891. doi: https://doi.org/10.3390/ijms19030891; see also Bossenmeyer-Pourié C, et al. N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol. 2019;248(3):291-303. doi: https://doi.org/10.1002/path.5254; see also Sade Yazdi D, et al. Homocysteine fibrillar assemblies display cross-talk with Alzheimer’s disease β-amyloid polypeptide. Proc Natl Acad Sci U S A. 2021;118(24):e2017575118. doi: https://doi.org/10.1073/pnas.2017575118; see also Lauer AA, et al. Mechanistic link between vitamin B12 and Alzheimer’s disease. Biomolecules. 2022;12(1):129. doi: https://doi.org/10.3390/biom12010129
127. Smith AD, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. doi: https://doi.org/10.1371/journal.pone.0012244
128. Douaud G, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523-8. doi: https://doi.org/10.1073/pnas.1301816110
129. de Jager CA, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592-600. doi: https://doi.org/10.1002/gps.2758
130. Frick B, et al. Homocysteine but not neopterin declines in demented patients on B vitamins. J Neural Transm.2006;113:1815–1819. doi: https://doi.org/10.1007/s00702-006-0539-x
131. Lauer AA, et al. Mechanistic link between vitamin B12 and Alzheimer’s disease. Biomolecules. 2022;12(1):129. doi: https://doi.org/10.3390/biom12010129
132. Durga J, et al. The effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomized, double blind, controlled trial. Lancet. 2007;369:208–216. doi: https://doi.org/10.1016/S0140-6736(07)60109-3
133. Venn BJ, et al. Comparison of the effect of low-dose supplementation with L-5-methyltetrahydrofolate or folic acid on plasma homocysteine: a randomized placebo-controlled study. Am J Clin Nutr. 2003;77(3):658-62. doi: https://doi.org/10.1093/ajcn/77.3.658; see also Lamers Y, et al. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces plasma total homocysteine concentrations in healthy women. Am J Clin Nutr. 2004;79(3):473-8. doi: https://doi.org/10.1093/ajcn/79.3.473; see also Henderson AM, et al. L-5-methyltetrahydrofolate supplementation increases blood folate concentrations to a greater extent than folic acid supplementation in Malaysian women. J Nutr. 2018;148(6):885-890. doi: https://doi.org/10.1093/jn/nxy057
134. Clarke R, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100(2):657-66. doi: https://doi.org/10.3945/ajcn.113.076349
135. McCaddon A, et al. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015;73(10):723-35. doi: https://doi.org/10.1093/nutrit/nuv022
136. Yu JT, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry.2020;91(11):1201-1209. doi: https://doi.org/10.1136/jnnp-2019-321913
137. Wu Y, et al. Effectiveness of B vitamins and their interactions with aspirin in improving cognitive functioning in older people with mild cognitive impairment: pooled post-hoc analyses of two randomized trials. J Nutr Health Aging.2021;25(10):1154-1160. doi: https://doi.org/10.1007/s12603-021-1708-1
138. Wang X, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007;369:1876–82. doi: https://doi.org/10.1016/S0140-6736(07)60854-X
139. Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: new insight from a meta-analysis. Int J Clin Pract. 2012;66:544–51. doi: https://doi.org/10.1111/j.1742-1241.2012.02929.x
Chapter 7. Omega-3 and B vitamins – the Dynamic Duo
140. Aisen PS, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774-83. doi: https://doi.org/10.1001/jama.300.15.1774
141. Rutjes AW, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018;12(12):CD011906. doi: https://doi.org/10.1002/14651858.CD011906.pub2
142. van der Zwaluw NL, et al. Results of 2-year vitamin B treatment on cognitive performance: secondary data from an RCT. Neurology. 2014;83(23):2158-66. doi: https://doi.org/10.1212/WNL.0000000000001050
143. Freund-Levi Y, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402-8. doi: https://doi.org/10.1001/archneur.63.10.1402
144. Jernerén F, et al. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015;102(1):215-21. doi: https://doi.org/10.3945/ajcn.114.103283
145. van Soest APM, et al. DHA status influences effects of B-vitamin supplementation on cognitive ageing: a post-hoc analysis of the B-proof trial. Eur J Nutr. 2022;61:3731–3739. doi: https://doi.org/10.1007/s00394-022-02924-w
146. Jernerén F, et al. Homocysteine status modifies the treatment effect of omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate Alzheimer’s disease: the OmegAD study. J Alzheimers Dis. 2019;69(1):189-197. doi: https://doi.org/10.3233/JAD-181148
147. Li M, et al. Effect of folic acid combined with docosahexaenoic acid intervention on mild cognitive impairment in elderly: a randomized double-blind, placebo-controlled trial. Eur J Nutr. 2021;60(4):1795-1808. doi: https://doi.org/10.1007/s00394-020-02373-3
148. Chen L, et al. Synergistically effects of n-3 PUFA and B vitamins prevent diabetic cognitive dysfunction through promoting TET2-mediated active DNA demethylation. Clin Nutr. 2025;45:111-123. doi: https://doi.org/10.1016/j.clnu.2025.01.002
149. Cummings JL, et al. The costs of developing treatments for Alzheimer’s disease: a retrospective exploration. Alzheimers Dement. 2022;18(3):469-477. doi: https://doi.org/10.1002/alz.12450
151. Tsiachristas A, Smith AD, et al. B-vitamins are potentially a cost-effective population health strategy to tackle dementia: too good to be true? Alzheimers Dement (N Y). 2016;2(3):156-161. doi: https://doi.org/10.1016/j.trci.2016.07.002
152. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
153. Johnson RJ, et al. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci.2023;378(1885):20220230. doi: https://doi.org/10.1098/rstb.2022.0230
Chapter 8. How our Sugared Brains are ‘Fructed’ and How Ketones Aid Recovery
154. S, et al. Could Alzheimer’s disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr. 2023;117(3):455-466. doi: https://doi.org/10.1016/j.ajcnut.2023.01.002
155. Softic S, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30(4):735-753.e4. doi: https://doi.org/10.1016/j.cmet.2019.09.003
156. Rendeiro C, et al. Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep. 2015;5:9589. doi: https://doi.org/10.1038/srep09589
157. Luchsinger A, et al. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63(7):1187-92. doi: https://doi.org/10.1212/01.WNL.0000140292.04932.87
158. Abbatecola AM, et al. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc.2004;52(10):1713–1718. doi: https://doi.org/10.1111/j.1532-5415.2004.52466.x
159. Li H, et al. Association of ultraprocessed food consumption with risk of dementia: a prospective cohort study. Neurology. 2022;99(10):e1056-e1066. doi: https://doi.org/10.1212/WNL.0000000000200871
160. Luchsinger JA, et al. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63(7):1187–92. doi: https://doi.org/10.1212/01.WNL.0000140292.04932; see also Abbatecola AM, et al. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc.2004;52(10):1713–8. https://doi.org/10.1111/j.1532-5415.2004.52466.x; see also
Xu WL, et al. Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia. 2009;52(6):1031–9. doi: 10.1007/s00125-009-1323-x; see also Hassing LB, et al. Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. J Int Neuropsychol Soc. 2004;10(4):599–607. https://doi.org/10.1017/S1355617704104165; see also Yaffe K, et al. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging. 2006;10(4):293–5. https://pubmed.ncbi.nlm.nih.gov/16886099/; see also Roberts RO, et al. Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med. 2014;55(5):759–64. https://jnm.snmjournals.org/content/55/5/759
161. Underwood PC, et al. HbA1c time in range and dementia. JAMA Netw Open. 2024;7(8):e2425354. doi: https://doi.org/10.1001/jamanetworkopen.2024.25354 162. Arvanitakis Z, et al. Diabetes mellitus and the risk of Alzheimer disease. Arch Neurol. 2004;61(5):661–666. doi:10.1001/archneur.61.5.661; Yaffe K, et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurol. 2004;63(4):658-663. 10.1212/01.wnl.0000134666.64593.ba
163. Tiehuis A, et al. Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease. Stroke. 2008;39:1600-1603. doi: https://doi.org/10.1161/STROKEAHA.107.506089; see also Samaras K, et al. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney memory and ageing study. Age (Dordr). 2014;36(2):977-93. doi: 10.1007/s11357-013-9613-0
164. Mortby M, et al. High “normal” blood glucose is associated with decreased brain volume and cognitive performance in the 60s: the PATH through life study. PLoS One. 2013;8(9):e73697. doi: https://doi.org/10.1371/journal.pone.0073697; see also Crane PK, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540-548. doi: https://doi.org/10.1056/NEJMoa1215740
165. Crane PK, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540–548. doi: https://doi.org/10.1056/NEJMoa1215740
166. Ye X, et al. Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br J Nutr. 2011;106(9):1423–1432. doi: https://doi.org/10.1017/S0007114511001760
167. Seetharaman S, et al. Blood glucose, diet-based glycemic load and cognitive aging amongst dementia-free older adults. J Gerontol A Biol Sci Med Sci. 2015;70(4):471–479. doi: https://doi.org/10.1093/gerona/glu135
168. Power SE, et al. Dietary glycaemic load associated with cognitive performance in elderly subjects. Eur J Nutr.2015;54(4):557–568. doi: 10.1007/s00394-014-0737-5
169. Taylor MK, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106(6):1463–1470. doi: https://doi.org/10.3945/ajcn.117.162263
170. Taylor MK, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106(6):1463-1470. doi: https://doi.org/10.3945/ajcn.117.162263
171. Gentreau M, et al. High glycemic load is associated with cognitive decline in apolipoprotein E ε4 allele carriers. Nutrients. 2020;12(12):3619. doi: https://doi.org/10.3390/nu12123619
172. Mortby ME, et al. High “normal” blood glucose is associated with decreased brain volume and cognitive performance in the 60s: the PATH through life study. PLoS One. 2013;8(9):e73697. doi: https://doi.org/10.1371/journal.pone.0073697
173. Deng YT, et al. Association of life course adiposity with risk of incident dementia: a prospective cohort study of 322,336 participants. Mol Psychiatry. 2022;27(8):3385-3395. doi: https://doi.org/10.1038/s41380-022-01604-9; see also Bouret SG, et al. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008;7(2):179-85. doi: https://doi.org/10.1016/j.cmet.2007.12.001
174. Oron-Herman M, et al. Hyperhomocysteinemia as a component of syndrome X. Metabolism. 2003;52(11):1491-5. doi: 10.1016/s0026-0495(03)00262-2
175. Chen L, et al. Synergistically effects of n-3 PUFA and B vitamins prevent diabetic cognitive dysfunction through promoting TET2-mediated active DNA demethylation. Clin Nutr. 2025;45:111-123. doi: https://doi.org/10.1016/j.clnu.2025.01.002
176. Johnson RJ, et al. Could Alzheimer’s disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr. 2023;117(3):455-66. doi: https://doi.org/10.1016/j.ajcnut.2023.01.002
177. Hwang JJ, et al. The human brain produces fructose from glucose. JCI Insight. 2017;2(4):e90508. doi: https://doi.org/10.1172/jci.insight.90508
178. Xu J, et al. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia. Sci Rep. 2016;6:27524. doi: https://doi.org/10.1038/srep27524
179. Johnson RJ, et al. Could Alzheimer’s disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr. 2023;117(3):455-66. doi: https://doi.org/10.1016/j.ajcnut.2023.01.002
180. Li Y, et al. Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med. 2023. doi: https://doi.org/10.1038/s12276-023-01112-y; see also, Sanli BA, et al. Unbiased metabolome screen links serum urate to risk of Alzheimer’s disease. Neurobiol Aging.2022;120:167–176. doi: https://doi.org/10.1016/j.neurobiolaging.2022.09.004
181. Johnson RJ, et al. A historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv Nutr.2017;8(3):412-422. doi: https://doi.org/10.3945/an.116.014654
182. Underwood PC, et al. HbA1c time in range and dementia. JAMA Netw Open. 2024;7(8):e2425354. doi: https://doi.org/10.1001/jamanetworkopen.2024.25354
183. Yau PL, et al. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012;130(4):e856-64. doi: https://doi.org/10.1542/peds.2012-0324
184. Jia J, et al. A 19-year-old adolescent with probable Alzheimer’s disease. J Alzheimers Dis. 2023;91(3):915-922. doi: https://doi.org/10.3233/JAD-221065
185. Luchsinger JA, et al. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004 Oct 11;63(7):1187–92. doi: https://doi.org/10.1212/01.WNL.0000140292.04932.87; Abbatecola AM, et al. Insulin resistance and executive dysfunction in older persons. Journal of the American Geriatrics Society. 2004 Oct;52(10):1713–8. doi: https://doi.org/10.1111/j.1532-5415.2004.52466.x; see also Xu WL, et al. Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia. 2009 Mar 12;52(6):1031–9. doi: https://doi.org/10.1007/s00125-009-1323-x.; Hassing LB, et al. Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. Journal of the International Neuropsychological Society. 2004 Jul;10(4):599–607. doi: https://doi.org/10.1017/S1355617704104165; Yaffe K, et al. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. The Journal of Nutrition, Health & Aging. 2006 Jul 1;10(4):293–5. Available from: https://pubmed.ncbi.nlm.nih.gov/16886099/; Roberts RO, et al. Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. Journal of Nuclear Medicine. 2014 Mar 20;55(5):759–64. doi: 10.2967/jnumed.113.132647
186. Vandenberghe C, et al. Tricaprylin alone increases plasma ketone response more than coconut oil or other medium-chain triglycerides: an acute crossover study in healthy adults. Curr Dev Nutr. 2017;1(4):e000257.https://pmc.ncbi.nlm.nih.gov/articles/PMC5998344/
187. Croteau E, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis. 2018;64(2):551-561. doi: https://doi.org/10.3233/JAD-180202
188. Fortier M, et al. A ketogenic drink improves cognition in mild cognitive impairment: results of a 6-month RCT. Alzheimers Dement. 2021;17(3):543-552. doi: https://doi.org/10.1002/alz.12206
189. Phillips MCL, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):51. doi: https://doi.org/10.1186/s13195-021-00783-x
190. Sabia S, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ.2018;362:k2927. doi: https://doi.org/10.1136/bmj.k2927
191. Fortier M, et al. A ketogenic drink improves cognition in mild cognitive impairment: results of a 6-month RCT. Alzheimers Dement. 2021;17(3):543-552. doi: https://doi.org/10.1002/alz.12206
Chapter 9. Anti-age your Brain with Antioxidants, Glutathione and NAC
192. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
193. Cacciottolo M, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry. 2017;7(1):e1022. doi: https://doi.org/10.1038/tp.2016.280
194. Chen C, et al. B vitamin intakes modify the association between particulate air pollutants and incidence of all-cause dementia: findings from the Women’s Health Initiative Memory Study. Alzheimers Dement. 2022;18(11):2188-2198. doi: https://doi.org/10.1002/alz.12515
195. Yu JT, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry.2020;91(11):1201-1209. doi: https://doi.org/10.1136/jnnp-2019-321913
196. Carr AC, et al. Factors affecting the vitamin C dose-concentration relationship: implications for global vitamin C dietary recommendations. Nutrients. 2023;15(7):1657. doi: https://doi.org/10.3390/nu15071657
197. Mons U, et al. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione – post-hoc analysis of data from a smoking cessation trial. Free Radic Biol Med. 2016;91:172-7. doi: https://doi.org/10.1016/j.freeradbiomed.2015.12.018
198. Peng M, et al. Dietary total antioxidant capacity and cognitive function in older adults. J Nutr Health Aging. 2023. Doi: https://doi.org/10.1007/s12603-023-1934-9
199. See Professor Jeremy Spencer’s presentation at the Alzheimer’s is preventable masterclass (2022) – foodforthebrain.org/aipmasterclass; also see Spencer JP. The impact of fruit flavonoids on memory and cognition. Br J Nutr. 2010 Oct;104 Suppl 3:S40-7. doi: 10.1017/S0007114510003934
200. Brickman AM, et al. Dietary flavanols restore hippocampal-dependent memory in older adults with lower diet quality and lower habitual flavanol consumption. Proc Natl Acad Sci U S A. 2023;120(23):e2216932120. doi: https://doi.org/10.1073/pnas.2216932120
201. Lamport DJ, et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl). 2015;232(17):3227-34. doi: https://doi.org/10.1007/s00213-015-3972-4
202. Sesso HD, et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am J Clin Nutr.2022;115(6):1490-1500. doi: https://doi.org/10.1093/ajcn/nqac055
203. Basambombo LL, et al. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother. 2017;51(2):118-124. doi: https://doi.org/10.1177/1060028016673072
204. Yu JT, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry.2020;91(11):1201-9. doi: https://doi.org/10.1136/jnnp-2019-321913
205. Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. J Exp Bot. 2024;75(9):2682-2699. doi: https://doi.org/10.1093/jxb/erae023
206. Park SA, et al. A preliminary study on the potential protective role of the antioxidative stress markers of cognitive impairment: glutathione and glutathione reductase. Clin Psychopharmacol Neurosci. 2023;21(4):758-768. doi: https://doi.org/10.9758/cpn.23.1053
207. Park SA, et al. A preliminary study on the potential protective role of the antioxidative stress markers of cognitive impairment: glutathione and glutathione reductase. Clin Psychopharmacol Neurosci. 2023;21(4):758-768. doi: https://doi.org/10.9758/cpn.23.1053
208. Martínez de Toda I, et al. Altered redox state in whole blood cells from patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2019;71(1):153-163. doi: https://doi.org/10.3233/JAD-190198
209. Kalamkar S, et al. Randomized clinical trial of how long-term glutathione supplementation offers protection from oxidative damage and improves HbA1c in elderly type 2 diabetic patients. Antioxidants (Basel). 2022;11(5):1026. doi: https://doi.org/10.3390/antiox11051026
210. Vairetti M, et al. Changes in glutathione content in liver diseases: an update. Antioxidants (Basel). 2021;10(3):364. doi: https://doi.org/10.3390/antiox10030364
211. Jiménez-Jiménez FJ, et al. Oxidative stress markers in multiple sclerosis. Int J Mol Sci. 2024;25(12):6289. doi: https://doi.org/10.3390/ijms25126289
212. Kosenko EA, et al. Antioxidant status and energy state of erythrocytes in Alzheimer dementia: probing for markers. CNS Neurol Disord Drug Targets. 2012;11(7):926-32. doi: https://doi.org/10.2174/1871527311201070926; see also Chen JJ, et al. Altered central and blood glutathione in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther. 2022;14(1):23. doi: https://doi.org/10.1186/s13195-022-00961-5
213. Witschi A, et al. The systemic availability of oral glutathione. Eur J Clin Pharmacol. 1992;43(6):667–669. doi: 10.1007/BF02284971
214. Lavoie S, et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33(9):2187–2199. doi: https://doi.org/10.1038/sj.npp.1301624
215. Ohlenschlager G, et al. Patent number: 5925620 International Classification A61K 3800 for synergistic action of anthocyanidins and glutathione. https://patents.google.com/patent/US5925620A/en
216. Kalamkar S, et al. Randomized clinical trial of how long-term glutathione supplementation offers protection from oxidative damage and improves HbA1c in elderly type 2 diabetic patients. Antioxidants (Basel). 2022;11(5):1026. doi: https://doi.org/10.3390/antiox11051026
217. Bradlow RCJ, et al. The potential of N-acetyl-L-cysteine (NAC) in the treatment of psychiatric disorders. CNS Drugs. 2022;36(5):451-482. doi: https://doi.org/10.1007/s40263-022-00907-3
218. Jarrett H, et al. Vitamin B-6 and riboflavin, their metabolic interaction, and relationship with MTHFR genotype in adults aged 18-102 years. Am J Clin Nutr. 2022;116(6):1767-1778. doi: https://doi.org/10.1093/ajcn/nqac240
220. Chen F, et al. Magnesium and cognitive health in adults: a systematic review and meta-analysis. Adv Nutr.2024;15(8):100272. doi: https://doi.org/10.1016/j.advnut.2024.100272
221. Devore E, et al. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72:135-43. doi: https://doi.org/10.1002/ana.23594; see also Agarwal P, et al. Association of strawberries and anthocyanidin intake with Alzheimer’s dementia risk. Nutrients.2019;11(12):3060. doi: https://doi.org/10.3390/nu11123060
222. Devore E, et al. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72:135-43. doi: https://doi.org/10.1002/ana.23594; see also Agarwal P, et al. Association of strawberries and anthocyanidin intake with Alzheimer’s dementia risk. Nutrients.2019;11(12):3060. doi: https://doi.org/10.3390/nu11123060
223. Feng L, et al. Tea for Alzheimer’s prevention. J Prev Alzheimers Dis. 2015;2(2):136-141. doi: https://doi.org/10.14283/jpad.2015.57
224. Cornelis MC, et al. Caffeinated coffee and tea consumption, genetic variation and cognitive function in the UK biobank. J Nutr. 2020;150(8):2164-2174. doi: https://doi.org/10.1093/jn/nxaa147
225. Lamport DJ, et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl). 2015;232(17):3227-34. doi: https://doi.org/10.1007/s00213-015-3972-4
Chapter 10. Use it or Lose it – Lifestyle Factors that Protect Your Brain
226. Woollett K, Maguire EA. Acquiring “the knowledge” of London’s layout drives structural brain changes. Curr Biol.2011;21(24):2109-14. doi: https://doi.org/10.1016/j.cub.2011.11.018
227. Patel VR, et al. Alzheimer’s disease mortality among taxi and ambulance drivers: population based cross sectional study. BMJ. 2024;387:e082194. doi: https://doi.org/10.1136/bmj-2024-082194
228. Yu JT, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry.2020;91(11):1201-9. doi: https://doi.org/10.1136/jnnp-2019-321913
229. Hale JM, et al. Does postponing retirement affect cognitive function? A counterfactual experiment to disentangle life course risk factors. SSM Popul Health. 2021;15:100855. doi: https://doi.org/10.1016/j.ssmph.2021.100855: see also Dufouil C, et al. Older age at retirement is associated with decreased risk of dementia. Eur J Epidemiol.2014;29(5):353-61. doi: https://doi.org/10.1007/s10654-014-9906-3
230. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
231. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A.2011;108(7):3017-22. doi: https://doi.org/10.1073/pnas.1015950108
232. Sala A, et al. Lifelong bilingualism and mechanisms of neuroprotection in Alzheimer dementia. Hum Brain Mapp.2022;43(2):581-92. doi: https://doi.org/10.1002/hbm.25605
233. Ferguson L, et al. One-year cognitive outcomes from a multiple real-world skill learning intervention with older adults. Aging Ment Health. 2023;27(11):2134-2143. doi: https://doi.org/10.1080/13607863.2023.2197847
234. Wei L, et al. Association of vitamin C with the risk of age-related cataract: a meta-analysis. Acta Ophthalmol.2016;94(3):e170-6. doi: https://doi.org/10.1111/aos.12688
235. Lim JC, et al. Vitamin C and the lens: new insights into delaying the onset of cataract. Nutrients. 2020;12(10):3142. doi: https://doi.org/10.3390/nu12103142
236. Chang D, et al. Serum free fatty acids level in senile cataract. J Am Coll Nutr. 2014;33(5):406-11. doi: https://doi.org/10.1080/07315724.2013.875420
237. Choo PP, et al. Review of evidence for the usage of antioxidants for eye aging. Biomed Res Int. 2022;2022:5810373. doi: https://doi.org/10.1155/2022/5810373
238. Lin FR, et al. Hearing intervention versus health education control to reduce cognitive decline in older adults with hearing loss in the USA (ACHIEVE): a multicentre, randomised controlled trial. Lancet. 2023;402(10404):786-797. doi: https://doi.org/10.1016/S0140-6736(23)01406-X
239. Gopinath B, et al. Consumption of omega-3 fatty acids and fish and risk of age-related hearing loss. Am J Clin Nutr.2010;92(2):416-21. doi: https://doi.org/10.3945/ajcn.2010.29370
240. Samocha-Bonet D, et al. Diabetes mellitus and hearing loss: a review. Ageing Res Rev. 2021;71:101423. doi: https://doi.org/10.1016/j.arr.2021.101423
241. Penninkilampi R, et al. The association between social engagement, loneliness, and risk of dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2018;66(4):1619-33. doi: https://doi.org/10.3233/JAD-180439
243. Herold F, et al. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements – a systematic review. Eur Rev Aging Phys Act. 2019;16:10. doi: https://doi.org/10.1186/s11556-019-0217-2
244. Ludyga S, et al. Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nat Hum Behav. 2020;4(6):603-12. doi: https://doi.org/10.1038/s41562-020-0851-8
245. Wang W, et al. Total and regional fat-to-muscle mass ratio and risks of incident all-cause dementia, Alzheimer’s disease, and vascular dementia. J Cachexia Sarcopenia Muscle. 2022;13(5):2447-2455. doi: https://doi.org/10.1002/jcsm.13054
246. Gallardo-Gómez D, et al. Optimal dose and type of exercise to improve cognitive function in older adults: a systematic review and Bayesian model-based network meta-analysis of RCTs. Ageing Res Rev. 2022;76:101591. doi: https://doi.org/10.1016/j.arr.2022.101591
Chapter 11. Brain Recovery and Repair – the Sleep, Stress and Hormone Connection
247. Crawford MA, et al. Docosahexaenoic acid explains the unexplained in visual transduction. Entropy.2023;25(11):1520. doi: https://doi.org/10.3390/e25111520
248. Reiter RJ, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253-78. doi: https://doi.org/10.1111/jpi.12360
249. Minich DM, et al. Is melatonin the “next vitamin D”? A review of emerging science, clinical uses, safety, and dietary supplements. Nutrients. 2022;14(19):3934. doi: https://doi.org/10.3390/nu14193934
250. Jean-Louis G, et al. Melatonin effects on sleep, mood, and cognition in elderly with mild cognitive impairment. J Pineal Res. 1998;25:177–183. doi: https://doi.org/10.1111/j.1600-079X.1998.tb00557.x
251. Furio AM, et al. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J Pineal Res. 2007;43:404–409. doi: https://doi.org/10.1111/j.1600-079X.2007.00491.x
252. Bubu OM, et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep.2017;40(1). https://pubmed.ncbi.nlm.nih.gov/28364458/
253. Chen LJ, et al. Can physical activity eliminate the mortality risk associated with poor sleep? A 15-year follow-up of 341,248 MJ cohort participants. J Sport Health Sci. 2022;11(5):596-604. doi: https://doi.org/10.1016/j.jshs.2021.03.001
254. Saul S. Sleep drugs found only mildly effective but wildly popular. New York Times. 23 October 2007. https://www.nytimes.com/2007/10/23/health/23drug.html; see also https://www.theguardian.com/society/2008/feb/05/health1
255. Holbrook AM. Treating insomnia. BMJ. 2004;329(7476):1198-9. doi: https://doi.org/10.1136/bmj.329.7476.1198: see also Kripke DF, et al. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open.2012;2(1):e000850. doi: https://doi.org/10.1136/bmjopen-2012-000850
256. Tavares G, et al. Cognitive and balance dysfunctions due to the use of zolpidem in the elderly: a systematic review. Dement Neuropsychol. 2021;15(3):396-404. doi: https://doi.org/10.1590/1980-57642021dn15-030013
257. Shell W, et al. A randomized, placebo-controlled trial of an amino acid preparation on timing and quality of sleep. Am J Ther. 2010;17(2):133-9. doi: https://doi.org/10.1097/MJT.0b013e31819e9eab
258. Daviet R, et al. Associations between alcohol consumption and gray and white matter volumes in the UK Biobank. Nat Commun. 2022;13(1):1175. doi: https://doi.org/10.1038/s41467-022-28735-5
259. Sabia S, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ.2018;362:k2927. doi: https://doi.org/10.1136/bmj.k2927
260. Nurk E, et al. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr. 2009;139(1):120-7. doi: https://doi.org/10.3945/jn.108.095182
261. Franks KH, et al. Association of stress with risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. J Alzheimers Dis. 2021;82(4):1573-1590. doi: https://doi.org/10.3233/JAD-210094
262. Debono M, et al. Modified-release hydrocortisone to provide circadian cortisol profiles. J Clin Endocrinol Metab.2009;94(5):1548-54. doi: https://doi.org/10.1210/jc.2008-2380
263. Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci. 2019;11:43. doi: https://doi.org/10.3389/fnagi.2019.00043
264. Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci. 2019;11:43. doi: https://doi.org/10.3389/fnagi.2019.00043
265. Siddiqui AN, et al. Neuroprotective role of steroidal sex hormones: an overview. CNS Neurosci Ther.2016;22(5):342-50. doi: https://doi.org/10.1111/cns.12538
266. Bianchi VE, et al. Impact of testosterone on Alzheimer’s disease. World J Mens Health. 2022;40(2):243. doi: https://doi.org/10.5534/wjmh.210175: see also Grimm A, et al. Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein. Cellular and Molecular Life Sciences. 2016;73(1):201-15. doi: 10.1007/s00018-015-1988-x
267. Bendis PC, et al. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci.2024;18:131223. doi: https://doi.org/10.3389/fnins.2024.1348551
268. Schiller CE, et al. Reproductive steroid regulation of mood and behaviour. Compr Physiol. 2016;6(3):1135-60. doi: https://doi.org/10.1002/cphy.c150014
269. Behrman S, Crockett C. Severe mental illness and the perimenopause. BJPsych Bull. 2023. doi: 10.1192/bjb.2023.89
270. Rocca WA, et al. Oophorectomy, estrogen, and dementia: a 2014 update. Mol Cell Endocrinol. 2014;389(1-2):7-12. doi: https://doi.org/10.1016/j.mce.2014.01.020
271. Mosconi L, et al. New horizons in menopause, menopausal hormone therapy, and Alzheimer’s disease: current insights and future directions. J Clin Endocrinol Metab. 2025;dgaf026. doi: https://doi.org/10.1210/clinem/dgaf026
272. Del Río JP, et al. Steroid hormones and their action in women’s brains: the importance of hormonal balance. Front Public Health. 2018;6:141. doi: https://doi.org/10.3389/fpubh.2018.00141
273. Glynne S, et al. Effect of transdermal testosterone therapy on mood and cognitive symptoms in peri- and postmenopausal women: a pilot study. Arch Womens Ment Health. 2024. doi: 10.1007/s00737-024-01513-6
274. Kim YJ, et al. Association between menopausal hormone therapy and risk of neurodegenerative diseases: implications for precision hormone therapy. Alzheimers Dement (N Y). 2021;7(1):e12174. doi: https://doi.org/10.1002/trc2.12174
275. Yahn GB, et al. The role of dietary supplements that modulate one-carbon metabolism on stroke outcome. Curr Opin Clin Nutr Metab Care. 2021;24(4):303-307. doi: https://doi.org/10.1097/MCO.0000000000000743
276. Marek K, et al. The role of vitamin D in stroke prevention and the effects of its supplementation for post-stroke rehabilitation: a narrative review. Nutrients. 2022;14(13):2761. doi: https://doi.org/10.3390/nu14132761
277. Jadavji NM, et al. B-vitamin and choline supplementation increases neuroplasticity and recovery after stroke. Neurobiol Dis. 2017;103:89-100. doi: https://doi.org/10.1016/j.nbd.2017.04.001
278. Toups K, et al. Precision medicine approach to Alzheimer’s disease: successful pilot project. J Alzheimers Dis.2022;88(4):1411-1421. doi: https://doi.org/10.3233/JAD-215707
279. Moldavan M, et al. Neurotropic and trophic action of Lion’s Mane mushroom Hericium erinaceus extracts on nerve cells in vitro. Int J Med Mushrooms. 2007;9:15-28. doi:10.1615/IntJMedMushr.v9.i1.30: see also Yadav SK, et al. A mechanistic review on medicinal mushrooms-derived bioactive compounds: potential mycotherapy candidates for alleviating neurological disorders. Planta Med. 2020;86(16):1161-1175. doi: https://doi.org/10.1055/a-1177-4834
281. Mori K, et al. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23:367-372. doi: https://doi.org/10.1002/ptr.2634
282. Li IC, et al. Prevention of early Alzheimer’s disease by erinacine A-enriched Hericium erinaceus mycelia pilot double-blind placebo-controlled study. Front Aging Neurosci. 2020;12:155. doi: https://doi.org/10.3389/fnagi.2020.00155
283. Yu N, et al. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxid Med Cell Longev. 2020; doi: https://doi.org/10.1155/2020/9894037
284. Kongkeaw C, et al. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. J Ethnopharmacol. 2014;151(1):528-35. doi: https://doi.org/10.1016/j.jep.2013.11.008
285. Saeger HN, Olson DE, et al. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem.2022;162(1):109-127. doi: https://doi.org/10.1111/jnc.15544
Chapter 12. Microbes and the Mind
286. Walker AW, Hoyles L. Human microbiome myths and misconceptions. Nat Microbiol. 2023;8(8):1392-1396. doi: https://doi.org/10.1038/s41564-023-01426-7
287. Chakrabarti A, et al. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci. 2022;79(2):80. doi: https://doi.org/10.1007/s00018-021-04060-w
288. Williams ZAP, et al. Do microbes play a role in Alzheimer’s disease? Microb Biotechnol. 2024;17(4):e14462. doi: https://doi.org/10.1111/1751-7915.14462
289. Beydoun MA, et al. Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer’s disease dementia in a large national survey. J Alzheimers Dis. 2020;75(1):157-172. doi: https://doi.org/10.3233/JAD-200064
290. Noble JM, et al. Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-III. J Neurol Neurosurg Psychiatry. 2009;80(11):1206-11. doi: https://doi.org/10.1136/jnnp.2009.174029
291. Chen CK, et al. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther. 2017;9:56. doi: https://doi.org/10.1186/s13195-017-0282-6
293. L’Heureux JE, et al. Oral microbiome and nitric oxide biomarkers in older people with mild cognitive impairment and APOE4 genotype. PNAS Nexus. 2025;4(1):pgae543. doi: https://doi.org/10.1093/pnasnexus/pgae543
294. Flemmig TF, et al. Differential clinical treatment outcome after systemic metronidazole and amoxicillin in patients harboring Actinobacillus actinomycetemcomitans and/or Porphyromonas gingivalis. J Clin Periodontol. 1998;25(5):380-7. doi: https://doi.org/10.1111/j.1600-051X.1998.tb02459.x
295. Owoyele PV, Malekzadeh S. Porphyromonas gingivalis, neuroinflammation and Alzheimer’s disease. Niger J Physiol Sci. 2022;37(2):157-164. doi: https://doi.org/10.54548/njps.v37i2.1
296. Kanagasingam S, et al. Porphyromonas gingivalis conditioned medium induces amyloidogenic processing of the amyloid-β protein precursor upon in vitro infection of SH-SY5Y cells. Mol Oral Microbiol. 2022. Doi:https://doi.org/10.3233/ADR-220029
297. Daniel R, et al. Diabetes and periodontal disease. J Pharm Bioallied Sci. 2012;4(Suppl 2):S280-2. doi: https://doi.org/10.4103/0975-7406.100251
299. Lin WR, et al. Cytomegalovirus is present in a very high proportion of brains from vascular dementia patients. Neurobiol Dis. 2002;9(1):82-7. doi: https://doi.org/10.1006/nbdi.2001.0465
300. Readhead BP, et al. Alzheimer’s disease-associated CD83(+) microglia are linked with increased immunoglobulin G4 and human cytomegalovirus in the gut, vagal nerve, and brain. Alzheimers Dement. 2024. doi: https://doi.org/10.1002/alz.14401
301. Arce-López B, et al. Biomonitoring of mycotoxins in plasma of patients with Alzheimer’s and Parkinson’s disease. Toxins (Basel). 2021;13(7):477. doi: https://doi.org/10.3390/toxins13070477
302. Ratnaseelan AM, et al. Effects of mycotoxins on neuropsychiatric symptoms and immune processes. Clin Ther.2018;40(6):903-917. doi: https://doi.org/10.1016/j.clinthera.2018.05.004
303. Hazan S, et al. Vitamin C improves gut Bifidobacteria in humans. Future Microbiol. 2022. doi: https://doi.org/10.2217/fmb-2022-0209
304. Stilling RM, et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016;99:110-132. doi: https://doi.org/10.1016/j.neuint.2016.06.011
305. Kaats GR, et al. Konjac glucomannan dietary supplementation causes significant fat loss in compliant overweight adults. J Am Coll Nutr. 2015;34(6):500-5. https://pubmed.ncbi.nlm.nih.gov/26492494/
306. Devaraj RD, et al. Health-promoting effects of konjac glucomannan and its practical applications: a critical review. Int J Biol Macromol. 2019;126:273-281. doi: https://doi.org/10.1016/j.ijbiomac.2018.12.203
PART 3 – PREVENTION IN ACTION
Chapter 13. Assessing and Reversing Your Risk with the Cognitive Function Test
Chapter 14. Your Alzheimer’s Prevention Plan – Diet, Supplements & Lifestyle
307. Eskelinen MH, et al. Midlife healthy-diet index and late-life dementia and Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2011;1(1):103-12. doi: https://doi.org/10.1159/000327518
308. Jia J, et al. Association between healthy lifestyle and memory decline in older adults: 10 year, population based, prospective cohort study. BMJ. 2023;380:e072691. doi: https://doi.org/10.1136/bmj-2022-072691
309. Singh B, et al. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39(2):271-82. doi: https://doi.org/10.3233/JAD-130830
310. Croll PH, et al. Better diet quality relates to larger brain tissue volumes: the Rotterdam study. Neurology.2018;90(24):e2166-e2173. doi: https://doi.org/10.1212/WNL.0000000000005691
311. Li Y, et al. Long-term intake of red meat in relation to dementia risk and cognitive function in US adults. Neurology.2025;104(3):e210286. doi: https://doi.org/10.1212/WNL.0000000000210286
312. Li H, et al. Association of ultraprocessed food consumption with risk of dementia: a prospective cohort. Neurology.2022;99(10):e1056-e1066. doi: https://doi.org/10.1212/WNL.0000000000200871
313. Devore E, et al. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72:135-43. doi: https://doi.org/10.1002/ana.23594: see also Agarwal P, et al. Association of strawberries and anthocyanidin intake with Alzheimer’s dementia risk. Nutrients.2019;11(12):3060. doi: https://doi.org/10.3390/nu11123060
314. Godos J, et al. Fish consumption, cognitive impairment and dementia: an updated dose-response meta-analysis of observational studies. Aging Clin Exp Res. 2024;61:3731–3739. doi: https://doi.org/10.1007/s40520-024-02823-6
315. Beydoun MA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. doi: https://doi.org/10.1186/1471-2458-14-643
316. Pan Y, et al. Association of egg intake with Alzheimer’s dementia risk in older adults: the Rush memory and aging project. J Nutr. 2024;154(7):2236-2243. doi: https://doi.org/10.1016/j.tjnut.2024.05.012
317. Román GC, et al. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris).2019;175(10):705-723. doi: https://doi.org/10.1016/j.neurol.2019.07.017
318. Wang X, et al. Coffee drinking timing and mortality in US adults. Eur Heart J. 2025;ehae871. doi: https://doi.org/10.1093/eurheartj/ehae871
319. Nurk E, et al. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr. 2009;139(1):120-7. doi: https://doi.org/10.3945/jn.108.095182
320. Feng L, et al. Tea for Alzheimer prevention. J Prev Alzheimers Dis. 2015;2(2):136-141. doi: https://doi.org/10.14283/jpad.2015.57
321. Cornelis MC, et al. Caffeinated coffee and tea consumption, genetic variation and cognitive function in the UK biobank. J Nutr. 2020;150(8):2164-2174. doi: https://doi.org/10.1093/jn/nxaa147
322. Lamport DJ, et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl). 2015;232(17):3227-34. doi: https://doi.org/10.1007/s00213-015-3972-4
323. Sabia S, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ.2018;362:k2927. doi: https://doi.org/10.1136/bmj.k2927
324. Li Y, et al. Long-term intake of red meat in relation to dementia risk and cognitive function in US adults. Neurology.2025;104(3):e210286. doi: https://doi.org/10.1212/WNL.0000000000210286
325. Clayton P, Rowbotham J, et al. An unsuitable and degraded diet? Part one: public health lessons from the mid-Victorian working class diet. J R Soc Med. 2008;101:282–289. doi: https://doi.org/10.1258/jrsm.2008.080112; see also Clayton P, Rowbotham J, et al. An unsuitable and degraded diet? Part two: realities of the mid-Victorian diet. J R Soc Med. 2008;101:350–357. doi: https://doi.org/10.1258/jrsm.2008.080113
326. Hemilä H, Chalker E. Vitamin C for the common cold and pneumonia. Pol Arch Intern Med. 2025;135:16926. doi: https://doi.org/10.20452/pamw.16926; see also Holford P, et al. Vitamin C—an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients.2020;12(12):3760. doi: https://doi.org/10.3390/nu12123760
Chapter 15. The Global Citizen Science Alzheimer’s Prevention Revolution
329. Zhang L, et al. Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2017;56(4):1241-1257. doi: https://doi.org/10.3233/JAD-170020
330. Zhang Y, et al. Identifying modifiable factors and their joint effect on dementia risk in the UK Biobank. Nat Hum Behav. 2023;7:1185–1195. doi: https://doi.org/10.1038/s41562-023-01585-x
332. Tsiachristas A, Smith AD, et al. B-vitamins are potentially a cost-effective population health strategy to tackle dementia: too good to be true? Alzheimers Dement (N Y). 2016;2(3):156-161. doi: https://doi.org/10.1016/j.trci.2016.07.002